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Abstract

Background: The scientific literature contains a wealth of information from different

fields on potential disease mechanisms. However, identifying and prioritizing mechan-

isms for further analytical evaluation presents enormous challenges in terms of the

quantity and diversity of published research. The application of data mining approaches

to the literature offers the potential to identify and prioritize mechanisms for more

focused and detailed analysis.

Methods: Here we present MELODI, a literature mining platform that can identify mech-

anistic pathways between any two biomedical concepts.

Results: Two case studies demonstrate the potential uses of MELODI and how it can gen-

erate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and

prostate cancer derives the intermediate transcription factor SP1, recently confirmed to

be physically interacting with ERG. Second, examining the relationship between a new

potential risk factor for pancreatic cancer identifies possible mechanistic insights which

can be studied in vitro.

Conclusions: We have demonstrated the possible applications of MELODI, including two

case studies. MELODI has been implemented as a Python/Django web application, and is

freely available to use at [www.melodi.biocompute.org.uk].
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Introduction

An understanding of the mechanisms that relate identified

risk factors to health outcomes is important in the discov-

ery of potential drug targets and disease biomarkers.

Identifying the mechanistic pathway from a given exposure

to a given disease allows us to consider which steps along

the pathway are potentially modifiable. This offers the po-

tential to identify new biomarkers and potential treatments

to reduce subsequent risk of the disease.

Before embarking on novel research, either in vitro or in

silico, it is important to examine what evidence is already

available, so that the most promising opportunities are pur-

sued and resources are not wasted. However, most scientific

subjects produce too many publications to read in detail,

and consequently researchers often rely on inefficient and

potentially biased methods to prioritize which mechanisms

to investigate. Existing approaches to collating relevant pub-

lished evidence include manual filtering/selection of the lit-

erature, ranking by publication metrics such as impact

factor/number of citations, examining media/social media

reports, and word of mouth. It is clear that a more system-

atic, automated data mining approach offers enormous po-

tential to assist in identification of existing evidence and

therefore prioritization of mechanisms to investigate. To

this end, tools which help us search and refine a set of litera-

ture are becoming increasingly important.

To derive potential mechanisms on the pathway

between two concepts, we can search the literature for

overlapping mechanisms between these two concepts. One

option to do this is to simply search the two concepts

simultaneously with a boolean ‘AND’ operator, using

PubMed [https://www.ncbi.nlm.nih.gov/pubmed] or a

standard search engine. This approach, however, will only

find cases where both concepts are described together in

the same place. This will miss cases where the overlapping

mechanisms are described in independent places, i.e. in one

place in relation to the risk factor and in another in rela-

tion to the outcome. To address this, we need to assess

each concept separately and look for overlapping elements.

Many text mining tools are available which can be used

to extract potential mechanistic terms from the free text of

articles, usually titles and abstracts. A search of OMICtools

(March 2017) produced 104 tools in the ‘Information

Extraction’ category alone [https://omictools.com/informa

tion-extraction-category]. These vary widely in their ap-

proach to key aspects such as synonyms, computational per-

formance and precision (predictive value). Measures of

precision and recall are vital in understanding the effective-

ness of a tool; however, they are hard to measure when

searching for novel mechanisms. An alternative to extracting

information from raw literature text is to use pre-calculated

literature annotation objects. These can either be generated

by humans, e.g. Medical Subject Headings (MeSH) [https://

www.nlm.nih.gov/mesh/] or computationally derived, e.g.

Semantic MEDLINE Database (SemMedDB).1

The MeSH thesaurus is a well-established set of terms

used to index articles from over 5000 of the world’s lead-

ing biomedical journals. These terms are freely provided by

the National Library of Medicine and currently consist of

over 27 000 descriptors, which are used by the MeSH staff

to assign the most appropriate terms to each MEDLINE/

PubMed article. Data are arranged in a complex hierarchy

and are available to download in many different formats

including summary data, hierarchy and frequency.

SemMedDB is a repository of semantic predications ex-

tracted by SemRep2 which uses the Unified Medical

Language System (UMLS) and a set of defined rules. For

every title and abstract, a Subject-PREDICATE-object tri-

ple is generated where the subject and object are terms

from the UMLS Metathesaurus and the predicate is a rela-

tion from the UMLS Semantic Network. For example, the

sentence ‘We used haemofiltration to treat a patient with

digoxin overdose that was complicated by refractory

hyperkalaemia’ produces the following four triples [https://

semrep.nlm.nih.gov/]:

i. Haemofiltration-TREATS-Patient;

ii. Digoxin overdose-PROCESS_OF-Patients;

iii. hyperkalaemia-COMPLICATES-Digoxin overdose;

iv. Haemofiltration-TREATS(INFER)-Digoxin overdose.

Identifying patterns and overlapping elements across

two sets of scientific literature could involve either finding

single terms common to both articles, e.g. MeSH or

SemMedDB terms, or more complex associations, e.g.

Key Messages

• The biomedical literature contains information on potential mechanisms linking risk factors and disease.

• We describe MELODI, a data mining tool to enable potential mechanisms to be derived from the literature.

• MELODI prioritizes known and unknown mechanisms for further detailed investigation.
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finding pairs of SemMedDB triples where the object of a

triple in one article set is the subject of a triple in the other

(Figure 1). This has been attempted by a number of others.

One well-established method is Arrowsmith,3 which is

based on single overlapping words from article titles only,

limited to a maximum of 25 000 articles per article set and

has limited options to download, visualize, filter and ex-

plore the resulting data (Supplementary Table 2, available

as Supplementary data at IJE online). Another application

is TeMMPo [https://www.temmpo.org.uk/] which was de-

veloped for identifying intermediate biological mechanisms

underpinning the effects of lifestyle factors on cancer out-

comes, using a predefined set of possible intermediates.

This approach, however, is hypothesis driven (because

intermediates have to be identified in advance) which lim-

its the capacity to identify novel intermediates. There are

also examples of searching SemMedDB data for overlap-

ping elements4,5 and even proof of principle examples of

using graph databases.6 However, there is currently no

modern software tool to perform this task on custom data

sets in an efficient and intuitive way using the enrichment

of annotation objects to refine the list of terms.

We present MELODI (Mining Enriched Literature

Objects to Derive Intermediates), a web application which

provides a user-friendly environment in which to identify

overlapping intermediates from two sets of articles repre-

senting two distinct biomedical concepts. MELODI in-

cludes an enrichment step, whereby the frequencies of

terms within a set of articles are compared with the

background frequencies in the whole database. This step is

particularly important for identification of overlapping

elements, due to the abundance of common terms and the

error rate associated with extracting terms from free text.

Enrichment prioritizes cases where an object has been

derived from text on multiple separate occasions, and often

these are from independent studies. This reduces the effect

of artificial object enrichment caused by frequent mentions

of a term/phrase in a single abstract and incorrect object

assignment (where an object has been incorrectly ex-

tracted/assigned) based on writing style. MELODI also has

an upper limit on the number of articles per article set of

one million and, via authentication, provides user space

which retains user-specific search results and article sets.

Methods: implementation

Application construction

We constructed MELODI using the Django web frame-

work [https://djangoproject.com] with the following add-

itional plugins and features. Authentication is handled via

the Django Social Authentication plugin [https://django-so

cial-auth.readthedocs.org/en/latest/], providing a method

to make all data, jobs and results both user-specific and re-

trievable. As some of the database queries were proving

too intensive for a responsive user experience, we inte-

grated a task management system. This uses the distributed

task queue Celery [http://www.celeryproject.org/] and the

Figure 1. An overview of the enrichment analysis. An example analysis of two article sets, one with 70 000 articles and one with 100 000 articles. For

each article set, the SemMedDB and MeSH data are retrieved from the graph (open circles) with roughly twice as many objects as articles. An enrich-

ment step identifies those objects that are enriched in that particular data set compared with the background (solid circles and numbers in parenthe-

ses). Those objects that are found to be overlapping between the article sets are returned for further analysis.
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in-memory data structure store Redis [http://redis.io/].

Allowing jobs to be handled by a sophisticated task man-

agement system removes the need to wait on-screen for

analyses to complete and provides the opportunity for

large complex queries. Supplementary Figure 1 (available

as Supplementary data at IJE online) summarizes the flow

of the application.

The graph database

Identifying connections between two sets of articles can in-

volve searching many millions of objects and relationships.

Data storage and analysis of this type are suited to graph

databases, and with recent advances in this field we decided

from the outset to use a graph database [Neo4j, https://

neo4j.com/]. Neo4j is a database constructed of nodes, rela-

tionships and properties, which structures data on the basis

of relationships rather than in a conventional tabular struc-

ture. We chose this approach in preference to a relational

database due to: the data being relationship rich; the pre-

dicted search strategies (i.e. identifying novel relationships

between data sets); and the intuitive nature of using a graph

to contain and search data of this type. We implemented an

additional MySQL database [https://www.mysql.com/] to

provide job progress reports, record user-specific job data

and improve data processing at the front end.

Data

We preloaded the graph database with publicly available

data from MeSH and SemMedDB, and then augmented

and modified with frequencies per year for each annotated

term and user-provided relationship datum (Table 1). As

of March 2017, the graph consists of over 44 million nodes

and 200 million relationships, the main components of

which are listed in Table 2. We will update the graph as

new releases of MeSH and SemMedDB data are released.

Preloaded data

Table 1 lists the sources of data that were preloaded into

the graph, notably summary data from SemMedDB and

MeSH. We first transformed SemMedDB data sets from

SQL and then all data were converted to a standard de-

limited format. We then inserted the data into the graph

using the ‘neo4j-import’ command, a very efficient method

for inserting large amounts of data into a Neo4j graph.

Data needed to be pre-processed to include the same separ-

ator, with correct header information and care taken so

that all other insertion requirements were met. The appli-

cation code, scripts that we used to transform the raw data

into appropriate files and the neo4j import command are

available at [https://github.com/MRCIEU/melodi/]. Once

data were inserted, the graph was indexed in a similar way

to standard relational databases.

Uploaded data

Our main aim of preloading a large amount of data into the

graph was to minimize the time spent processing user-supplied

Table 1. Sources of data

Entry Name Version Description

P MeSH countsa 2015 Frequency counts for main MeSH terms

P MeSH structureb 2016 MeSH hierarchy structure

P PubMedc 26 Basic article data up to 30 April 2016

P PubMed-MeSHc 2016 MeSH terms for each PubMed article

P SemMedDBd 26 SemMedDB summary data for each article

U Article set N/A Collection of PubMed articles

U Article set: PubMed N/A Article set to PubMed relationships

C New PubMed Daily PubMed information not already in database

C PubMed-Mesh Daily PubMed to MeSH relationships

P, preloaded; U, user uploaded; C, computationally uploaded; N/A, not available.
a[https://mbr.nlm.nih.gov/Download/].
b[https://www.nlm.nih.gov/mesh/download_mesh.html].
c[https://mbr.nlm.nih.gov/MRCOC.shtml].
d[http://skr3.nlm.nih.gov/SemMedDB/index.html].

Table 2. Graph details

Data Type Number

PubMed article Node 25698930

MeSH term Node 464122

MeSH tree Node 56326

SemMedDB triple Node 17713740

SemMedDB concept Node 284806

PubMed-MeSH Relationship 80395022

PubMed-SemMedDB triple Relationship 84621296

SemMedDB Triple-SemMedDB concept Relationship 35498324
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information. Therefore, the only modifications to the graph

required when generating a user set of articles are the specifica-

tion of the article set as a node and specification of the relation-

ships between that node and the publications to which it

relates, e.g. the lines connecting the blue ‘Article Set’ node and

the green ‘Publication’ nodes in Supplementary Figure 1. We

initially attempted to create an empty graph that was organic-

ally populated with user information; however, the overheads

associated with dynamically creating a graph using large

amounts of data and using the less efficient insertion methods

were too great.

Using the application

Creating an article set

MELODI is based on identifying mechanisms linking two

article sets. An article set is simply a set of articles that rep-

resent a defined concept, e.g. ‘body mass index’. There are

two ways to create a new article set, each of which is

defined by a set of PubMed IDs. The first is to perform a

PubMed search within the application. This retrieves the

PubMed IDs using the Entrez programming utilities,7 and

populates the graph with the new relationships as

described above. The second option is to upload a set of

PubMed IDs. The benefit of this option is that a set of IDs

can be hand curated, improving the focus of the article set,

removing the reliance on the methodology of a PubMed

search and allowing for greater flexibility in how the set is

created. When carefully constructed, producing article sets

in this way will generate the most informative results with

higher specificity (although this ‘manual curation’ has the

potential to introduce additional bias).

Comparing article sets

A simple hypothesis-free approach to comparing the two

article sets would be to identify terms which overlap across

the two sets and quantify their occurrence using the num-

ber of articles mentioning them. This would identify the

most common elements present in the article sets, but

many of these will be uninformative (e.g. commonly occur-

ring terms). MELODI reduces the problem with a two-step

strategy (Figure 2), using enrichment to identify terms that

Figure 2. Exploring the results. An example of the visualizations and filters within the results. Panel A contains the main filtering options for the

Semantic Medline data, including P-value, odds ratio and predicate frequency rank (PFR). This final metric allows the user to filter results based on

the global frequencies of the SemMedDB predicates, on the assumption that less frequent predicates are more informative. Panel B gives an example

of the force-directed graph visualization of the results. Each article set, subject and object is displayed as a node, with the relationships between them

collapsed into single arcs. The thickness of these arcs represents the number of publications generating the relationship. Panel C represents the

same data in a Sankey diagram. This time the individual predicates are listed in square brackets and the thickness of the bands represents the num-

ber of publications, each SemMed subject and object as a type associated with it. Those present in the figures are listed in panel D. This gives an im-

mediate overview of the types of terms present in the results on display. Panel E shows the table displayed below panels A-D on the results page.

This table is the data source behind the visualizations, and therefore controls what is displayed. Clicking on any of the coloured terms adds that term

to a filter box in panel A, which can then be set to exclude (N) or include (Y) in the results. Panel F shows the detailed publication data from one of

these links, allowing the user to correlate the enriched concepts to the actual articles they were derived from.
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occur in the article sets more often than would occur by

chance.

In the first step, for a given article set the enriched elem-

ents are identified. For MeSH terms, this is based on the

number of times a MeSH term has been annotated as a

main MeSH term in the article set, compared with the fre-

quency of the main MeSH terms across all articles in

MEDLINE (calculated from the entire set of MeSH data).

For SemMedDB, two alternative analysis methods are

available. The first is very similar to the MeSH approach,

using the single SemMedDB terms (extracted from the

triples) and then identifying enriched terms using their pre-

calculated global frequencies. The second has a similar

enrichment step but using the entire triplet and, again, fre-

quencies calculated from the global data set as the refer-

ence. An extra filtering step is also employed for

SemMedDB triples, which restricts the objects of article set

A and the subjects of article set B to terms which are pre-

sent fewer than 150 000 times in the SemMedDB data set.

This vastly reduces the number of overlapping terms,

removing 88 high-level terms such as ‘Patients’ and ‘Cells’

which would otherwise introduce unnecessary noise

(Supplementary Table 1, available as Supplementary data

at IJE online). In all three cases, the frequency of the term

is compared between the article set and the entire literature

set using a two-tailed Fisher’s exact test (FET). P-values

are corrected for multiple testing using the Benjamini/

Hochberg (non-negative) correction with a cutoff of

P< 1e-5. The results (P-value, corrected P-value and odds

ratio) are stored on file for later use to avoid the need for

repeating this step which can be computationally demand-

ing. The enrichment ensures that when large numbers of

articles are involved, multiple instances of a term are

required to define a term as enriched, i.e. a single instance

of a term is unlikely to be sufficient to be marked as en-

riched unless the article set in question is relatively small.

Exploring the results

An analysis of two article sets can be performed using the

MeSH terms and/or the SemMedDB data. The results of

these independent approaches are provided separately for

further investigation. As the analysis is hypothesis free, we

believe it is important to provide a first-pass filtered set of

results on the initial view but also include access to the en-

tire set of results, allowing the user to explore the data in

their entirety. We have provided the following filtering

parameters: FET corrected P-value, FET odds ratio and the

top number of results (all methods), as well as minimum

position in the MeSH hierarchy (MeSH method) and fre-

quency of the predicate term (SemMedDB triple method).

The inclusion of all predicates in the final data is deliber-

ate, as cases where there are low numbers of enriched

overlapping SemMedDB triple objects can still hold valu-

able information but may use more common predicates

such as ASSOCIATED_WITH and AFFECTS. This is un-

like other approaches5 in which a universal predicate filter

was used. As article set comparisons produce differing

numbers of overlapping elements, a basic set of dynamic

filtering rules are employed when displaying the results for

the first time, adjusting the filters based on the number of

results, e.g. low numbers of overlapping enriched elements

are treated with a more relaxed set of parameters.

Visualization of results is provided using interactive

Sankey diagrams and, for SemMedDB triples, an add-

itional force-directed network diagram (Figure 2). Both are

based on the same data displayed in the table on the page,

with strength of supporting evidence represented by the

thickness of connections. The network-based view is often

more intuitive when trying to identify paths between two

article sets, as the same SemMedDB object may be present

multiple times. This view also highlights the possibility of

multiple steps between article sets.

The automatic filtering performed before visualization

attempts to highlight the most informative enriched over-

lapping elements. However, as free text is inherently noisy

(from the automatic language processing point of view)

and computational predictions are not perfect, an add-

itional text filtering option is provided. This consists of a

number of text boxes that can be used either to ‘filter out’

or to ‘restrict to’ keywords within the results, and in the

case of SemMedDB analysis this can be done on any of the

five elements (subject A—predicate 1—[object A/subject B]

—predicate 2—object B) simply by clicking on the corres-

ponding term in the table (Figure 2). The filter option is

particularly useful where there are many overlapping terms

between two article sets, and the restrict option is useful in

cases where a more focused search is required, for example

with defined exposure and outcome terms (Supplementary

Figure 2, available as Supplementary data at IJE online).

Examples of this are discussed later.

The order in which the results are delivered is critical,

as this determines the top set that are displayed for closer

inspection. This order can be based on a number of factors,

e.g. the mean corrected P-value across the two article sets,

the minimum position in the MeSH hierarchy or the predi-

cate frequency rank. In addition to these, a custom-

designed score is used which aims to identify overlapping

elements with a high number of supporting articles in both

article sets (Equation 1), where uniq_a and uniq_b are the

number of unique articles from each article set that contain

the overlapping term. This is based on the assumption that

these elements may be the most reliable, due to many and

equal articles producing the objects. This assumption does

risk ignoring cases where a small number of valid articles
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support one side of the relationship, and should therefore

be used with caution.

Equation 1

score ¼ min ðuniqa;uniqbÞ
max ðuniqa;uniqbÞ

� ðuniqa þ uniqbÞ

Applying MELODI to scientific research

The hypothesis generation methods provided by MELODI

can be applied to a wide range of scientific disciplines. As

we have implemented MELODI using PubMed and

SemMedDB, the current applications have a biomedical

focus. In all cases, the overarching aim would be to derive

intermediates between two clearly defined scientific con-

cepts. These two scientific concepts can arise from a range

of different techniques and approaches, and the intermedi-

ate mechanisms identified can be further investigated using

a similar range of techniques and approaches (Figure 3).

For simplicity, we have grouped some of these approaches

into three categories.

i. Laboratory investigation. There are many ways in

which laboratory studies could result in two concepts

that would benefit from a methodical search of the lit-

erature for mechanisms that may connect them. For

example, a cell line study that identifies differential lev-

els of a particular protein in a treated cancer cell line,

compared with untreated, could be followed up by a

MELODI analysis to identify potential intermediate

proteins. These could then be investigated by further

laboratory analysis, or through literature review.

ii. Epidemiology. Observational epidemiology focuses

on broad ‘exposure’ and ‘outcome’ concepts that

encompass a lot of underlying mechanisms (using co-

hort studies and case-control studies in particular). A

relationship such as that between alcohol intake and

heart disease could be investigated to identify potential

intermediate mechanisms that could be investigated in

the laboratory, as biomarkers or risk predictors in epi-

demiology, or via review of the literature. For causal

analysis in epidemiology, Mendelian randomization

(MR) uses genetic variants as proxies (instruments) to

investigate whether an exposure (such as alcohol in-

take) has a causal effect on disease outcome.8–11

Causal relationships identified with MR could also be

investigated in MELODI (exactly as with conventional

observational studies), but a real advantage of MR is

in following up potential mechanisms identified by

MELODI, to determine whether they are truly on the

causal pathway or are simply biomarkers.

iii. Scientific literature. MELODI is based on the scientific

literature and can very naturally be used to identify po-

tential mechanisms underlying relationships identified

from the literature (particularly those with strong evi-

dence provided by formal systematic review12 and meta-

analysis). The results of a MELODI analysis are also

amenable to literature review for the initial investigation

of a potential mechanism. MELODI provides access to

all the articles that support a particular mechanism, ena-

bling comprehensive manual review to determine

whether the candidate mechanism is plausible. If so, this

may be followed up with a formal systematic review or

meta-analysis, or using laboratory or epidemiological

approaches if additional evidence is needed.

In addition to the approaches described above, an itera-

tive MELODI analysis may be performed, in which an inter-

mediate derived from a MELODI analysis can be used as the

starting point for a new investigation using MELODI.

Results

Performance

We evaluated the time taken for insertion and indexing of all

data. This was completed in under 2 h and produced a graph

database around 50 GB in size, using 80 GB RAM. By pre-

populating the graph with almost all the necessary data, we

greatly reduced the burden of uploading data dynamically.

Extracting large amounts of heavily connected data is still,

however, a challenge. An article set containing 100 000 art-

icles will take around 1 min to create relationships, 2 min for

MeSH enrichment and 5 min for SemMedDB enrichment.

When comparing two article sets of that size, the overlap

step takes 2–5 min, depending on the number of overlapping

elements. Therefore, in total, performing a complete analysis

Figure 3. Concept origins and post-MELODI investigations. MELODI

takes two concepts and derives intermediates. These concepts (solid

lines) can originate from a number of places, e.g. an epidemiological

observation, or a finding from a laboratory experiment. By creating art-

icle sets that represent these two concepts, potential intermediates

(dashed lines) can be derived which may provide testable hypotheses.

These can then be investigated further using approaches similar to

those that created the initial concepts.
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on two large article sets can take around 10 min, depending

on server load and queues. However, as the results of each of

the enrichment steps are stored to disk, they are only per-

formed once. This means that if the same article set is used

for subsequent analysis this step is skipped, reducing compu-

tational requirements by around 80%.

Our inclusion of a task management system allows mul-

tiple users to work with MELODI simultaneously, as jobs

are either added to an available worker or held in a queue

until one becomes available. Currently MELODI is run-

ning on a virtual machine with four central processing

units (CPUs) (and therefore four workers), but can be

scaled easily to support demand by adding more CPUs and

distributing the graph on a cluster.

Case studies

Two case studies describing how MELODI can be used to

generate hypotheses, and how they can be explored, fur-

ther are described below.

ERG and prostate cancer

ETS-related gene (ERG) is an oncogene that has, in the

past decade, become closely linked with prostate cancer.13

Chromosomal rearrangements cause ERG and transmem-

brane protease, serine 2 (TMPRSS2) to fuse together,

forming an oncogenic fusion gene which then disrupts the

ability of stem cells to differentiate into prostate cells, lead-

ing to unregulated and unorganized tissue. This gene fu-

sion is the most common type found in prostate cancer and

can be identified by overexpression of ERG in prostate

carcinomas.14

Much work has been done on elucidating the mechan-

ism by which ERG is associated with prostate cancer. We

used MELODI, therefore, to assess the literature on ERG

and prostate cancer. Article sets for ‘TMPRSS2:ERG or

ETS-related gene’ and ‘prostate cancer’ were generated and

compared (1 March 2017) using 867 and 138 391 articles,

respectively. As expected, many genes previously described

were identified, notably phosphatase and tensin homolog

(PTEN) and androgen receptor (AR) in the SemMedDB

triple results (Table 3, example 1) and ETS Proto-

Oncogene 1 (ETS1), ETS variant 1 (ETV1) and ETS

variant 4 (ETV4) in the SemMedDB single-term results

(Table 3, example 2). In addition, by ordering this latter

set of results by those that share the fewest articles, the Sp1

transcription factor gene (SP1) appears, a transcription fac-

tor known to bind to many promoters with a wide-ranging

set of proposed functions (Figure 4). The SemMedDB data

used to identify this intermediate gene was version 26

which included publication data up to 30 April 2016. In

August 2016, Sharon et al. published a paper describing

the role of SP1 in the regulation of insulin-like growth

Table 3. MELODI result uniform resource locators (URLs)

Example URL

1 [http://melodi.biocompute.org.uk/results/fedb4912-

b04e-4fc8-ac1f-a1c2f04da670/]

2 [http://melodi.biocompute.org.uk/results/2a76380c-

324d-4b47-95e4-2dfcaebc5289/]

3 [http://melodi.biocompute.org.uk/results/2f98cf49-

a084-4ac3-81ff-3d1932d6bb1d/]

4 [http://melodi.biocompute.org.uk/results/1c5edda6-

8fbc-4ea9-b8b6-d66bc82a6a79/]

Figure 4. ERG, SP1 and prostate cancer. The Sankey Plot visualization of the ERG-prostate cancer analysis with SP1 highlighted.

376 International Journal of Epidemiology, 2018, Vol. 47, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/47/2/369/4803214 by guest on 07 N

ovem
ber 2019

http://melodi.biocompute.org.uk/results/fedb4912-b04e-4fc8-ac1f-a1c2f04da670/
http://melodi.biocompute.org.uk/results/fedb4912-b04e-4fc8-ac1f-a1c2f04da670/
http://melodi.biocompute.org.uk/results/2a76380c-324d-4b47-95e4-2dfcaebc5289/
http://melodi.biocompute.org.uk/results/2a76380c-324d-4b47-95e4-2dfcaebc5289/
http://melodi.biocompute.org.uk/results/2f98cf49-a084-4ac3-81ff-3d1932d6bb1d/
http://melodi.biocompute.org.uk/results/2f98cf49-a084-4ac3-81ff-3d1932d6bb1d/
http://melodi.biocompute.org.uk/results/1c5edda6-8fbc-4ea9-b8b6-d66bc82a6a79/
http://melodi.biocompute.org.uk/results/1c5edda6-8fbc-4ea9-b8b6-d66bc82a6a79/


factor receptor 1 (IGFR1) by the TMPRSS2-ERG fusion

gene.15 In this paper they describe a physical interaction

between the ERG and SP1 transcription factors, identified

by co-immunoprecipitation assays. This work demon-

strates the kind of further investigation that could have

been performed on the basis of identifying SP1 as a poten-

tial intermediate. and confirms the value of MELODI in

identifying novel intermediates.

In addition, the seven articles supporting the connection

between ERG and SP1 are from 2007 and earlier, suggest-

ing that the previous studies of Ewing’s sarcoma and acute

myeloid leukaemia, and not prostate cancer, may have

been overlooked. This indicates that the connection be-

tween ERG, SP1 and prostate cancer could have been iden-

tified many years ago. This can be demonstrated by

running the same analysis but using publications up to and

including 2005, which still finds SP1 as enriched and over-

lapping (Table 3, example 3).

Carnitine and pancreatic cancer

The following example illustrates the utility of MELODI

in the dissection of causal pathways. Using Mendelian ran-

domization (MR), we have recently found that elevated

levels of the amino acid derivative, carnitine, are associated

with an increased risk of developing pancreatic cancer

(unpublished work at the time of article press). In this situ-

ation, MELODI can be used as a starting point to investi-

gate how the exposure and the outcome might be

connected. Our aim was to generate mechanistic hypothe-

ses that might explain how carnitine increases the risk of

pancreatic cancer, for further investigation using in vitro

studies in the laboratory.

Article sets for ‘carnitine’ and ‘pancreatic cancer’ were

created with 14 631 and 82 226 articles, respectively, and

the intermediates derived (Table 3, example 4). Figure 5

shows the enriched relationships identified between these

two sets of data, and highlights possible intermediates be-

tween them. Of interest were the intermediates ‘fatty acid

oxidation’ and ‘insulin’. Upon investigation of the litera-

ture underpinning these connections (this can be done eas-

ily in MELODI which links directly to the articles in

PubMed), we found that carnitine can increase fatty acid

oxidation.16–18 Metabolic reprogramming is a known fea-

ture of cancer cells,19 and fatty acid oxidation can be used

by cancer cells for energy generation.20 We can therefore

generate the following hypothesis for further investigation

in the laboratory: ‘‘carnitine increases fatty acid oxidation

which provides pancreatic cancer cells with a metabolic

advantage’.

Insulin is also a highlighted intermediate linking carni-

tine and pancreatic cancer. Upon investigation of the litera-

ture underpinning the connections, we find that insulin

treatment of skeletal muscle increases the expression of the

carnitine transporter protein OCTN2. Investigation of the

literature highlighted by MELODI informs us that

increased insulin secretion is associated with some forms of

Figure 5. Carnitine and pancreatic cancer. In this example two article sets were compared, one focused around ‘Carnitine’ and the other around

‘Pancreatic Cancer’, the results of which are displayed using a force-directed graph. Each article set (large nodes), subject and object (small nodes) is

displayed as a node, with the relationships between them collapsed into single arcs. The thickness of these arcs represents the number of publica-

tions generating the relationship.
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pancreatic cancer.21 In addition, we have also found using

MR that elevated fasting levels of insulin are causally asso-

ciated with pancreatic cancer (unpublished data at time of

article press). Therefore, with information from MELODI

and our own MR investigations, we can generate the fol-

lowing hypothesis for further investigation in the labora-

tory: ‘elevated levels of insulin cause pancreatic cancer in

part through increased expression of the carnitine trans-

porter in pancreatic cancer cells’. This demonstrates the

power of MELODI as a hypothesis generator to investigate

the mechanisms underlying causal relationships.

Limitations

When identifying single overlapping terms, the structure of

the text is not so important; however, the SemMedDB triple

data are dependent on the structure. For example, an article

set might contain the triples geneA-ASSOCIATED_WITH-

geneB and geneB-ASSOCIATED_WITH-geneA. The under-

lying directionality provided by SemMedDB will lead to

these two triples being treated as separate entities. There are

cases where predicates imply direction, e.g. INHIBITS and

STIMULATES require this restriction, but other predicates

such as PART_OF and ASSOCIATED_WITH might not.

This highlights how the structure of titles and abstracts are

key to the extraction of SemMedDB triples and ultimately

the identification of overlapping terms. In addition, the

assumed directionality from article set A to article set B, and

the method for the identification of overlapping

SemMedDB triples, will likely miss many intermediates.

However, the potential gain of a small number of true-

positives is not worth the increase in false-negatives that

would occur if this restriction was removed. This depend-

ence on a rigid rule-based approach to data extraction could

be alleviated with the inclusion of more sophisticated meth-

ods, such as machine learning or natural language process-

ing. Their absence from MELODI is simply due to a lack of

methods and resources available at the time with which one

could process a large data set such as MEDLINE and ex-

tract complex data structures such as object-predicate-

subject. SemRep and SemMedDB are well-developed tools

that are under active development and provide frequent

data releases. In the future, additional types of data ex-

tracted from articles can be simply added as extra nodes

and relationships to the graph and as additional analysis

methods.

An important limitation of any literature-based tool is

that the published literature may be a biased subset, or a

biased over-representation, of research that has been

undertaken. A large proportion of negative findings are

never published, and groups often publish many related

papers with similar ideas discussed in the abstract. In

addition, the algorithms used to produce the SemMedDB

data and the humans used to assign the MeSH terms may

introduce unconscious bias. Using more flexible agnostic

methods such as those mentioned above would enable the

use of other publicly available data sets, alleviating some

of the bias associated with published literature. Even so,

MELODI is always going to give a biased representation of

what is really known about a topic. However, the alterna-

tive to a computational approach is manual curation,

which is impossible at this scale and potentially prone to

much greater bias. As long as the caveats and limitations

are understood, then the output of this kind of approach

can still be valuable and provide reliable hypotheses.

Discussion

MELODI is a hypothesis-free application that derives

mechanisms, both known and novel, from the published

literature. It uses a graph database to find enriched rela-

tionships between two sets of articles from the entire col-

lection of MEDLINE articles, using both the manually

curated MeSH terms and computationally derived

SemMedDB terms. We have demonstrated its ability to de-

rive both known and unknown intermediates across large

complex data sets. Our examples have shown how it can

derive novel intermediates for new studies and generate

mechanistic targets underlying observed epidemiological

associations.

An additional advantage of this kind of approach is the

inclusion of data from any MEDLINE article, regardless of

impact factor or citation number, which has obvious bene-

fits for the low-impact paper. Often in the course of a sci-

entific investigation, a decision is made to publish when

further work could still be carried out, but time or finan-

cial constraints are overriding. This has the benefit of

releasing information and data early even if the findings

and hypotheses have not been validated. The authors of

such papers may feel that more could have been done and

the resulting work may lack impact; however, tools like

MELODI can still use the output from these papers and,

combined with similar findings, can be used to encourage

others to continue this avenue of research, rather than the

article being lost in the deluge of papers published every

day.

MELODI is already capable of deriving reliable inter-

mediate hypotheses. There is, however, potential for future

development. The graph database is suited very well to the

inclusion of complementary data sets, and the addition of

these is planned. They include drug targets, metabolic

pathways and protein-protein interactions. These extra

data would permit reliable multi-step connections between

article sets using known data connections. The database
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already contains information on the SemMedDB term

types, which provides the necessary connections to the

extra data and further filtering options, e.g. to show only

intermediates that are genes, druggable, proteins, etc.

Filtering of the overlapping elements between article

sets could also be improved with more computational

methods. Machine learning techniques could be applied to

train the filtering steps to improve the accuracy and useful-

ness of intermediates, by learning from user filtering and

overlap with well-established data sets.

Supplementary Data

Supplementary data are available at IJE online.
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